
1 

 

Lecture 8 

Physics 404 

 

 Now we will try to understand the role of temperature in the thermodynamic properties of real 
systems.  Consider a system S in thermal contact with a much larger reservoir R, all at a constant 

temperature  and total energy U0.  The system and reservoir exchange energy, but not particles.  What 
is the probability that any given state “s” of the system is occupied in thermal equilibrium? 

If we specify the exact quantum state of the system (labeled by “s”, which is a list of quantum 

numbers), with energy s, then the multiplicity of the entire system+reservoir is given by the multiplicity 

of the reservoir alone: 1)( 0  sRTotal Ugg  , since specifying the precise state of the system means 

that it has a multiplicity of exactly 1.  Utilizing the Fundamental Assumption of statistical mechanics 
applied to the system+reservoir, this says that the relative likelihood of the system to be in state “1” (of 

energy 1 ) versus state “2” (of energy 2 ) is simply the ratio of the number of ways that the reservoir 

can have energy 10 U versus energy 20 U , or in other words: 
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R .  By writing 

the multiplicity in terms of the entropy (as eg  ), and doing a Taylor expansion for )(UR about 0U , 

we found 
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, which is independent of the details of the reservoir.  The factors of  /se
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called Boltzmann factors.   

 Define the Partition function (Zustandssumme in German) as 
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/seZ , where the sum is 

NOT over all energy levels s , but over every single quantum state with a unique set of quantum 

numbers “s”.  With this, we can calculate the probability of occupation of each energy level as 
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result above for 
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.  With this probability of occupation we can now calculate all of the 

macroscopic thermodynamic properties of a system in thermal contact with a reservoir as a thermal 
average or ensemble average of the associated microscopic quantity. 

 To illustrate how the partition function can be used to calculate thermodynamic quantities, we 
calculated the ensemble average or thermal average of the energy as 
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ssss .  The last step comes after manipulating the 

series and exploiting its dependence on .  Later on we will identify the logarithm of Z as the Helmholtz 

free energy (up to a factor of -).  Many other thermodynamic quantities can be calculated more or less 
directly from Z.  Note that Z has its origins in the quantum mechanical solution that forms the basis for 
the particle states. 
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 We did the example of a 2-state spin system in class, calculating the partition function Z and 
energy U. 

 Finally we considered how pressure is related to the energy states of a system.  By considering 
the quantum particle-in-a-box problem in three dimensions, we found that the eigen-energies are given 

by 
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 , where the particle has mass m, is confined to a cube of side length L, 

and the three quantum numbers are arbitrary positive integers.  This shows that the eigen-energies are 
inversely proportional to the volume of the system to the 2/3 power.  If we take a single particle in a box 
and apply hydrostatic pressure (equal normal force applied to each wall of the box), then this result says 
that the energy of the particle goes up as we compress the box volume.  By the work-energy theorem 
we know that this increase in energy of the particle comes from work that we do in applying a force 
through a distance.  By equating the work and increase in energy, we came up with an expression for 

the pressure applied to produce the change in energy of the particle in state “s”: 
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Performing a thermal average for a many particle system yields the total macroscopic pressure p: 

|
V

U
p




 , where it is assumed that the compression is performed iso-statically slowly, and the 

number of states in the system is kept fixed (hence constant multiplicity g and entropy ). 

 

 


